

Petroleum Engineers Club of Dallas

My Own Worst Enemy:

-- A Journey Toward Taming Overconfidence in Reserves Estimates

Presented by Rob Quigley

August 11, 2023

Disclaimer

This presentation by VSO Petroleum Consultants ("VSO") is intended for informational purposes only. The information contained herein is not, and under no circumstances is to be construed as, a prospectus, and advertisement, a public offering, or as an offer or recommendation to buy or sell the assets described herein. VSO provides the information and data contained herein on an "as is" basis, without representations or warranties of any kind whatsoever, expressed or implied. The information in this report may be incomplete and may not contain all material information relating to the subject matter of the report. Estimates herein were not prepared in accordance with SEC or SPE-PRMS guidelines.

This report and any associated emails or documentation have been prepared for and provided solely to our Client, who assumes all risk and liability with regard to any use or application of the data included herein. The information provided herein is not intended to be used as the primary basis for investment decisions and nothing contained herein is, or is intended to be, predictive of future results. Nothing in this report is, or should be construed to be, designed to meet the particular investment needs of any investor.

There are significant uncertainties in estimating reserves, production rates, revenues, and the timing and amount of future costs. Oil and gas reserves estimates must be recognized as a subjective process that cannot be measured in an exact way and estimates of others may differ materially from those of VSO. Production data subsequent to the date of these estimates may warrant revisions of such estimates. Accordingly, reserves estimates are often different from the quantities of oil and gas that are ultimately recovered

All proprietary analysis provided by VSO in this report are derived from VSO's analytic expertise, market knowledge, and the use of data it collects. This report reflects the results of our analysis as of the date of this report. The results of our analysis are subject to change at any time as new or additional data and information is received and analyzed. Any opinions, forecasts or estimates in this report may present a possible outcome on the basis of assumptions set out herein and represent only one possible outcome. These opinions, forecasts and/or estimates are subject to risks, uncertainties and assumptions and there can be no assurance that future results or events will be consistent with any such opinions, forecasts or estimates.

In no event shall VSO or its officers, directors, affiliates, shareholders or employees be liable for any damages including any special incidental or consequential damages that are directly or indirectly related to this report, including, without limitation, lost revenue or anticipated profits or lost business, and in no event shall the total liability of VSO for any and all losses and causes of action (whether in contract or in tort, including negligence or otherwise) arising from this report exceed in the aggregate the billing rate paid to VSO by our Client.

Imagine, It Was January 2006...

Disclosure of reserves revisions

REPJOL

YPF

 Proved reserves at end-2005 expected to be revised downward by 1,254 Mboe, representing 25% of end-2004 proved reserves

Mboe	Argentina	Bolivia	RoW	Total
December 31, 2004 (c)	2,364	1,309	1,253	4,926 (a)
Expected Revisions	(509)	(659)	(86)	(1,254)(b)

REPSOL

1.Image: https://commons.wikimedia.org/wiki/File:Sede_central_de_Repsol_YPF_%28Madrid%29_06 pg 2.Modified from Repsol YPF. 2006.

Why Do We Miss Reserves Estimates?

My Own Worst Enemy – Human Psyche in Reserves

1. Overconfidence is an Issue in Reserves Estimation

2. Quiz Time!

- 3. Bias Exists and Is Hard to Conquer
- 4. Proving Bias with Public Reserves Disclosures
- 5. Proposed Solutions to Improve on Bias
- 6. How Did We Do on the Quiz?

Quiz Time: Test Your Ability to Handle Uncertainty

Scan the QR Code. **Provide your answers** to the 10-question quiz. Results will be summarized at the end

of the presentation.

Page 6

My Own Worst Enemy – Human Psyche in Reserves

- 1. Overconfidence is an Issue in Reserves Estimation
- 2. Quiz Time!

3. Bias Exists and Is Hard to Conquer

- 4. Proving Bias with Public Reserves Disclosures
- 5. Proposed Solutions to Improve on Bias
- 6. How Did We Do on the Quiz?

Capen, Rose, and the E&P Risk Kings of the 1970's

The Difficulty of Assessing Uncertainty (SPE-5579-PA)

- Technical people have little grasp of uncertainty.
- Universal tendency to understate it
- Leads to overestimation of the precision of their knowledge.

1. Image: https://explorer.aapg.org/story/articleid/50083/a-player-in-the-emergence-of-e-p-risk-analysis 2. Modified from Capen. E. C. 1976.

Capen's Famous 10 Questions...

All SPE Section Demonstrated Dramatic Overconfidence

Requested Confidence Interval	SPE-AIME Section	Response Count	Expected # of Misses	Actual Avg # of Misses	Implied Confidence Interval	Implied Probabilistic Range
98%	Hobbs Petroleum	34	0.2	6.3	37%	P31 to P69
(P1 to P99)	Oklahoma City	111	0.2	7.0	30%	P35 to P65
	Los Angeles Basin	28	1	6.0	40%	P30 to P70
	San Francisco	61	1	6.4	36%	P32 to P68
	Oxnard	26	1	7.4	26%	P37 to P63
	Long Beach	28	1	6.0	40%	P30 to P70
90%	New York	29	1	6.5	35%	P33 to P67
(P5 to P95)	Charleston, Bridgeport	16	1	7.6	24%	P38 to P62
	Anchorage	63	1	6.5	35%	P33 to P67
	Bartlesville	44	1	6.3	37%	P32 to P69
	Lafayette	79	1	6.5	35%	P33 to P67
	Shreveport	41	1	6.8	32%	P34 to P66
000/	Vernal	13	2	7.2	28%	P36 to P64
	Denver	129	2	6.5	35%	P32 to P68
(P10 to P90)	Cody	42	2	7.3	27%	P37 to P63
	Columbus	27	5	7.0	30%	P35 to P65
50%	Lansing	30	5	6.8	32%	P34 to P66
(P25 to P75)	Chicago	41	5	6.5	35%	P33 to P67
	Tulsa	53	5	6.8	32%	P34 to P66
200/	Los Angeles Basin	27	7	7.0	30%	P35 to P65
	Long Beach	28	7	7.4	26%	P37 to P63
(P35 t0 P65)	Bridgeport ,Charleston	15	7	7.8	22%	P39 to P61
All C.I.'s	Grand Total	965	-	6.7	33%	P34 to P66

Contextualizing Capen in PRMS Reserves

We Can't Handle the Concept of Confidence Intervals

<u>Capen's Hypothesis:</u> Estimators will miss an average 68 percent of the questions, no matter what probability ranges they are asked for (33% CI).

Modified from Capen. E. C. 1976.

My Own Worst Enemy – Human Psyche in Reserves

- 1. Overconfidence is an Issue in Reserves Estimation
- 2. Quiz Time!
- 3. Bias Exists and Is Hard to Conquer

4. Proving Bias with Public Reserves Disclosures

- 5. Proposed Solutions to Improve on Bias
- 6. How Did We Do on the Quiz?

Lee, McVay, & Gomez: Reserves Uncertainty in the 21st Century

Page 14

Technical Revisions Reveal Overconfidence in US and Canadian Reserves (SPE-201116-PA)

□ Filers overestimated proved (1P) reserves.

- US filers: 51 % positive TRs instead of 90%
- Canadian filers: 72% positive TRs instead of 90%
- Canadian filers underestimated proved-plus-probable (2P) reserves slightly (54% positive TR, instead of 50%).

Idealized Reserves Scenario – Technical Revisions (TRs)

	Actual (mmbbl) 1P (mmbbl)			I)	2P (mmbbl)			3P (mmbbl)				
Year	Yearly Prod	Cum Prod	Reserves	EUR	TRs	Reserves	EUR	TRs	Reserves	EUR	TRs	Reserves
0	-	-	100.0	20.0	-	20.0	100.0	-	100.0	180.0	-	180.0
1	18.0	18.0	82.0	34.0	14.0	16.0	102.0	2.0	84.0	160.0	-20.0	142.0
2	15.5	33.5	66.5	50.0	16.0	16.5	99.0	<mark>-3</mark> .0	65.5	145.0	-15.0	111.5
3	13.3	46.8	53.2	70.0	20.0	23.2	103.0	4.0	56.2	131.0	-14.0	84.2
4	11.4	58.2	41.8	82.0	12.0	23.8	99.0	<mark>-4</mark> .0	40.8	119.0	- <mark>12.0</mark>	60.8
5	9.8	68.0	32.0	76.9	-5.1	8.9	103.9	4.9	35.9	113.9	-5.1	45.9
6	8.5	76.5	23.5	88.9	12.0	12.4	101.9	<mark>-2</mark> .0	25.4	120.9	7.0	44.4
7	7.3	83.8	16.2	94.0	5.1	10.2	105.0	3.1	21.2	114.0	-6 <mark>.9</mark>	30.2
8	6.3	90.1	9.9	98.0	4.0	7.9	104.0	- <mark>1</mark> .0	13.9	109.0	-5.0	18.9
9	5.4	95.5	4.5	100.0	2.0	4.5	105.0	1.0	9.5	106.0	-3.0	10.5
10	4.5	100.0	0.0	100.0	0.0	0.0	100.0	<mark>-5</mark> .0	0.0	100.0	-6 <mark>.0</mark>	0.0
		#	of Positiv	e TR's>>>	9			5			1	
		# (of Negativ	e TR's>>>	1			5			9	
200 180 160 140 120 100 80 60 40 20 0	 	1P 2P 3P Actual	EUR production	30 20 (Iqq 10 10 -10 -20 -30 0	2		6 8	3P 2P 1P 1P	120 100 80 60 TR 40 20 0 0		- Produ Prove 1P EL	ction (million bb d reserves IR 8
0 2	2 4 Tim	6 (vears)	8 10			Time (ye	ears)				Time (year	s)

Modified from Gomez Et. Al., 2020

Measuring Reserves Reliability – Calibration Plots

Confidence Bias

Measuring Reserves Reliability – Calibration Plots

Directional Bias

Technical Revisions Calibration

Canadian Annual Information Forum (CAIF) Disclosures Used for Revision Calibrations

- 1P and 2P reserves reported by public companies in Canada.
- Used Technical Revisions ("TR's") reported in Canada.
- **Summary of Canadian Estimators:**
 - 75% positive TR's for 1P (instead of 90%)
 - 54% positive TR's for 2P (instead of 50%)
 - 37% CI instead of 80% (in line with Capen universal 33% CI hypothesis).
 - CB 0.56 (Moderate Overconfidence)
 - DB -0.14 (Slight Pessimism)

Modified from Gomez Et. Al., 2020

Technical Revisions Calibration

Modified from Gomez Et. Al., 2020

My Own Worst Enemy – Human Psyche in Reserves

- 1. Overconfidence is an Issue in Reserves Estimation
- 2. Quiz Time!
- 3. Bias Exists and Is Hard to Conquer
- 4. Proving Bias with Public Reserves Disclosures

5. Proposed Solutions to Improve on Bias

6. How Did We Do on the Quiz?

Capen's Hypothesis: Estimators will miss an average 68 percent of the questions, no matter what probability ranges they are asked for (33% CI).

Modified from Capen. E. C. 1976.

Page 21

Proposed Methods to Overcome Human Bias

The Value of Feedback: Capen Monthly Uncertainty Quiz

- We need feedback to overcome our biases.
- **Feedback Improves Reserves Estimation**
 - New Orleans SPE
 - Stanford Research Institute (SRI)
 - [Some] Meteorologists Are Least Bias
- **Capen's Proposed Monthly Training Program**
 - Make prediction about the future.
 - Assign probabilities to your predictions.
 - Religiously check your results.

Modified from Capen. E. C. 1976.

Proposed Methods to Overcome Human Bias

The Value of Feedback: Tracking Confidence/Directional Bias Over Time

My Own Worst Enemy – Human Psyche in Reserves

- 1. Overconfidence is an Issue in Reserves Estimation
- 2. Quiz Time!
- 3. Bias Exists and Is Hard to Conquer
- 4. Proving Bias with Public Reserves Disclosures
- 5. Proposed Solutions to Improve on Bias

6. How Did We Do on the Quiz?

Capen's Hypothesis: Estimators will miss an average 68 percent of the questions, no matter what probability ranges they are asked for (33% CI).

Modified from Capen. E. C. 1976.

Comparison to Capen 1976 Study Results

Requested	SPE-AIME Section	Response	Expected # of	Actual Avg # of	Implied Confidence	Implied Probabilistic
Confidence Interval		Count	IVIISSES	WISSES	Interval	Range
98%	Hobbs Petroleum	34	0.2	6.26	37%	P31 to P69
(P1 to P99)	Oklahoma City	111	0.2	7	30%	P35 to P65
	Los Angeles Basin	28	1	5.96	40%	P30 to P70
	San Francisco	61	1	6.41	36%	P32 to P68
	Oxnard	26	1	7.38	26%	P37 to P63
	Long Beach	28	1	6.04	40%	P30 to P70
90%	New York	29	1	6.52	35%	P33 to P67
(P5 to P95)	Bridgeport ,Charleston	16	1	7.63	24%	P38 to P62
	Anchorage	63	1	6.54	35%	P33 to P67
	Bartlesville	44	1	6.3	37%	P32 to P69
	Lafayette	79	1	6.51	35%	P33 to P67
	Shreveport	41	1	6.83	32%	P34 to P66
	Vernal	13	2	7.23	28%	P36 to P64
80%	Denver	129	2	6.46	35%	P32 to P68
(P10 to P90)	Cody	42	2	7.31	27%	P37 to P63
	Dallas PECD 2023	31	2	6.56	34%	P33 to P67
	Columbus	27	5	6.96	30%	P35 to P65
50%	Lansing	30	5	6.83	32%	P34 to P66
(P25 to P75)	Chicago	41	5	6.54	35%	P33 to P67
	Tulsa	53	5	6.79	32%	P34 to P66
200/	Los Angeles Basin	27	7	7	30%	P35 to P65
	Long Beach	28	7	7.39	26%	P37 to P63
(P35 to P65)	Bridgeport ,Charleston	15	7	7.82	22%	P39 to P61

Comparison to Capen 1976 Study Results

Probability Range

Modified from Capen. E. C. 1976.

Reserves Calibration Plots

	PECD 2023	Canada	USA Est2
Avg. Actual # of Misses	6.6	-	-
Avg. P90 # of Misses	3.4	-	-
Avg. P10 # of Misses	3.5	-	-
Avg. Implied CI (vs 80%)	34%	37%	46%
Avg. Confidence Bias	0.62	0.56	0.43
Avg. Directional Bias	-0.11	-0.14	-0.28

Modified from Gomez Et. Al., 2020

Summary by Occupation

Rank	Occupation	Responses	Avg # of Misses	Avg # of P90 Misses	Avg # of P10 Misses	Avg Implied Cl	Avg Confidence Bias	Avg Directional Bias
1	Geoscience	1	4.0	1.0	3.0	0.60	0.25	-0.80
2	Engineering	19	5.7	2.9	3.2	0.43	0.50	-0.15
3	Other	2	7.3	4.1	4.2	0.27	0.78	-0.08
4	Banking/Finance/Business	8	8.2	4.3	4.3	0.18	0.83	-0.02
5	Land	2	9.5	6.3	3.7	0.05	1.00	0.26
	Grand Total	32	6.6	3.5	3.5	0.34	0.63	-0.11

Modified from Capen. E. C. 1976 & Gomez Et. Al., 2020

Summary by Experience

Rank	Experience	Responses	Avg # of Misses	Avg # of P90 Misses	Avg # of P10 Misses	Avg Implied Cl	Avg Confidence Bias	Avg Directional Bias
1	20 to 34	4	4.5	2.7	1.9	0.55	0.32	-0.09
2	10 to 19	10	6.1	3.1	3.4	0.39	0.57	-0.09
3	35+	6	6.9	4.4	3.4	0.31	0.72	-0.08
4	5 to 9	5	7.8	2.6	5.2	0.22	0.73	-0.41
5	0 to 4	7	7.3	4.3	3.6	0.27	0.73	0.07
	Grand Total	32	6.6	3.5	3.5	0.34	0.62	-0.11

Modified from Capen. E. C. 1976 & Gomez Et. Al., 2020

Why Do We Miss Reserves Estimates?

Reputation

VSO's reputation is trusted industrywide by both technical and financial professionals. Every VSO report adheres to the highest standards of technical excellence and reliability.

Attention

We are very responsive to clients and place a high degree of focus on each project. We put in extra effort to be highly attentive and creative for our clients, and to ensure every report relies upon a technically supportable evaluation.

Transparency

All readers of our reports and materials obtain great clarity into our analysis and key asset value drivers. Consumers of our differentiated reports and supporting documentation aren't left guessing; our analysis is transparent and thorough.

189

in Follow Us On Linkedin

Houston – HQ

550 Club Drive, Suite 100, Montgomery, TX 77316 Dallas

1700 Pacific Avenue, Suite 1280, Dallas, TX 75201

Appendix

My Own Worst Enemy – Taming Reserves Overconfidence

Bibliography

- □ Capen. E. C. 1976. The Difficulty of Assessing Uncertainty (includes associated papers 6422 and 6423 and 6424 and 6425). J Pet Technol 28 (8): 843-850. SPE-5579-PA. https://doi.org/10.2118/5579-PA.
- Gomez Et. Al., 2020. Technical Revisions Reveal Overconfidence in US and Canadian Reserves Estimates. SPE Res Eval & Eng 23 (03): 0783-0798. SPE-201116-PA. https://doi.org/10.2118/201116-PA
- Matthews Et. Al. 2021. Exxon Draws SEC Probe Over Permian Basin Asset Valuation. Wall Street Journal 15 Jan 2021. https://www.wsj.com/articles/exxon-draws-sec-probe-over-permian-basin-asset-valuation-11610716622
- McLane, M.A. 2001. Reserve Overbooking—The Problem No One Wants to Talk About. Paper SPE68580 presented at the SPE Hydrocarbon Economics and Evaluation Symposium, Dallas, Texas, 2–3 April. SPE 68580-MS.
- Olsen Et. Al. 2011. Reserves Overbooking: The Problem We're Finally Going To Talk About. SPE Econ & Mgmt 3 (2): 68-78. SPE-134014-PA. https://doi.org/10.2118/134014-PA.
- Repsol YPF. 2006. Estimated Reserves Revision. Presentation, (26 January 2006). https://www.sec.gov/Archives/edgar/data/847838/000095010306000177/jan2606_6k.htm (Downloaded 7 August 2023)
- Reynolds v. Repsol YPF. 2006. Consolidated Amended Class Action Complaint for Violations of Federal Securities Laws. (1 September 2006). https://securities.stanford.edu/filings-case.html?id=103566. (Downloaded 7 August 2023).
- SPE PRMS 2018. The Petroleum Resources Management System. (June 2018). https://www.spe.org/en/industry/reserves/

Proposed Methods to Overcome Human Bias

Capen Compensation Methodology

- Capen's Hypothesis: Estimators will miss an average 68 percent of the questions, no matter what probability ranges they are asked for (33% Cl).
- Methodology proposed by Capen to compensate for this phenomenon:
 - Plot your best guess P10 & P90 at the P30 & P70 mark, respectively on a probit plot (blue circles).
 - Assumes your best guess is only a 40%
 C.I. per survey results instead of an 80%
 C.I. required for a true P10 & P90.
 - Draw a straight line through you plotted points.
 - Extrapolate to find the biascompensated P10 & P90 (red stars)

Page 35

